General characteristics of radiation dosimeters and a terminology to describe them

D. W. O. Rogers,
Carleton Laboratory for
Radiotherapy Physics,
Physics Dept,
Carleton University,
Ottawa

http://www.physics.carleton.ca/~drogers Lecture IV, AAPM Summer School Colorado Springs, June 21, 2009

Basic quantities and notation: detector reading

Detector reading: quantified output of detector corrected to standard reference conditions

- -meter reading
- -charge reading
- $M_{
 m det}(D,\dot{D},Q, heta,\phi)$
- -current reading
- -light output
- -ESR signal peak-to-peak

$$M_{
m det}^{
m raw}(D,\dot{D},Q, heta,\phi,T,P,H)$$

May need correction for T, P, H, polarity effects or ion recombination etc

Basic quantities and notation: dose to the detector

$$D_{
m det}(D,\dot{D},Q, heta,\phi)$$

Average absorbed dose to material of detector -related to active material of detector system

For ion chamber -dose to gas in cavity.

For diode detector -dose to active region of silicon wafer.

Can have same dependencies as M_{det}

Basic quantities and notation: dose or kerma to medium

- -quantities at point of measurement in medium med in absence of detector
- -usually the quantity of interest
- -can depend on many influence quantities (e.g. depth, beam quality)
- Point of Measurement: usually centre,
 - -effective point of measurement for cylindrical

Basic quantities and notation: detector's absorbed-dose sensitivity

$$S_{ ext{AD,med}}(D,\dot{D},Q, heta,\phi) = rac{M_{ ext{det}}(D,\dot{D},Q, heta,\phi)}{D_{ ext{med}}(Q)}$$

Not detector sensitivity: must specify quantity referred to (here D_{med}).

Not detector response, since this is used so many ways.

A measured quantity which can not be calculated by usual Monte Carlo codes, without additional assumptions

Basic quantities and notation: detector's kerma sensitivity

$$S_{ ext{K,med}}(D,\dot{D},Q, heta,\phi) = rac{M_{ ext{det}}(D,\dot{D},Q, heta,\phi)}{K_{ ext{med}}(Q)}$$

cf the detector's absorbed-dose sensitivity.

Notation must include ",med" where med will frequently be air, to avoid confusion with

which is a brachytherapy source's air kerma strength

Basic quantities and notation: relative air kerma/dose sensitivity

$$S_{ ext{AD,med}}^{ ext{rel}}(D,\dot{D},Q, heta,\phi) = rac{S_{ ext{AD,med}}(D,\dot{D},Q, heta,\phi)}{S_{ ext{AD,med}}(D,\dot{D},Q_0, heta,\phi)}$$

$$S_{ ext{K,med}}^{ ext{rel}}(D,\dot{D},Q, heta,\phi) = rac{S_{ ext{K,med}}(D,\dot{D},Q, heta,\phi)}{S_{ ext{K,med}}(D,\dot{D},Q_0, heta,\phi)}$$

Sometimes called response or sensitivity in literature but these terms are not adequate.

Dimensionless quantities

Basic quantities and notation: calibration coefficients

absorbed dose calibration coefficient

$$N_{D,w} = rac{D_{\mathrm{water}}(Q)}{M_{\mathrm{det}}(Q)} ~~ [Gy/rdg]$$

air kerma calibration coefficient

$$N_K(Q) = rac{K_{
m air}(Q)}{M_{
m det}(Q)} ~~ [Gy/rdg]$$

Coefficients rather than factors since they change units (factors are dimensionless)

$$N_{D,w}(Q) = rac{D_{\mathrm{water}}(Q)}{M_{\mathrm{det}}(Q)} = rac{1}{S_{\mathrm{AD,med}}(Q)}$$

Calibration coefficient is inverse of sensitivity

Dosimeter Characteristics

Often dealt with separately, but must confirm their independence for a detector.

eg is the energy dependence of LiF independent of the size of the detector?

- · Environmental & measurement corrections
 - dose rate dependence
 - background correction
 - T,P,polarity, recombination
- intrinsic linearity
- ·energy dependence
 - ·intrinsic energy dependence
 - ·absorbed-dose energy dependence
- directional dependence
- •spatial resolution/size effects

Environmental and measurement corrections

If reading sensitive to environmental or measurement conditions, then it is common to correct the reading to some reference conditions

- -ion chamber
 - -reference temperature, pressure, humidity
 - -100 % collection efficiency
 - -polarity correction
- -Fricke dosimeter
 - -correct to reference temperature for irradiation and readout

$$M_{
m det}(T_0,P_0,H_0)=k_{
m env}(T,P,H)k_{dr}(M_{
m det}^{
m raw}(\dot{D}))M_{
m det}^{
m raw}(T,P,H,\dot{D})$$

ion chamber
$$k_{
m env}(T,P) = P_{tp}(T,P) = rac{273.2 + T}{273.2 + 22.0} imes rac{101.33}{P}$$

Environmental and measurement corrections: background

If a background reading needs to be subtracted (e.g for a TLD reading or for leakage current with an ion chamber):

$$k_{ ext{env}}^{ ext{bkgd}} = \left(1.0 - rac{M_{ ext{det}}^{ ext{bkgd}}}{M_{ ext{det}}}
ight)$$

$$k_{
m env}^{
m bkgd} M_{
m det} = M_{
m det} - M_{
m det}^{
m bkgd}$$

dose-rate dependence

A detector's reading may also depend on the dose rate. It is corrected to reference conditions where $k_{dr} = 1.00$

$$M_{
m det}'(\dot{D}) = k_{dr} \left(M_{
m det}^{
m raw}(\dot{D})
ight) M_{
m det}^{
m raw}(\dot{D})$$

Note k_{dr} is a function of raw reading, not dose rate since that is not known until after this correction is made.

Ion chambers: Pion is an example of kdr

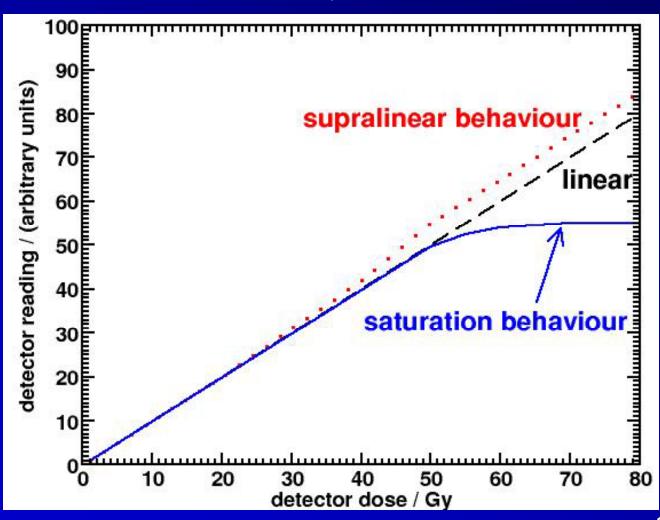
intrinsic linearity

Is the dose proportional to the detector reading?

$$D_{
m det}(D) = lpha k_l(M_{
m det}(D)) M_{
m det}(D)$$

k₁ is the intrinsic linearity which is unity for some reference dose.

If k_l is unity, detector is said to be *linear*. i.e. if the dose doubles, the reading doubles.



non-linear behaviour

For some detectors the response is not linear.

Some
systems have
more complex
behaviour:

eg radiographic film

14/21

energy dependence of the detector: intrinsic energy dependence

Overall energy dependence is broken into two components

Intrinsic energy dependence of detector relates reading of detector to dose to detector

$$D_{
m det}(Q) = k_{bq}(Q) M_{
m det}(Q)$$

Ideally $k_{bq}(Q)$ is a constant -it is for ion chambers

$$k_{bq}(Q) = rac{\left(rac{W}{e}
ight)}{m_{
m gas}}$$

k_{bq} is so frequently constant that it is often overlooked entirely.

energy dependence of the detector: intrinsic energy dependence

-k_{bq} is often assumed to be unity but this must be verified for all detectors

-TLD reading per unit dose to the TLD for low energy x-rays is thought to vary by 5 to 15% because of the high LET in these beams (see Ch 14 and 24 for further discussion).

-Fricke reading per unit dose to the Fricke dosimeter varies by 1% from Co-60 to 20 MV.

k_{bq} cannot be calculated with Monte Carlo.
At best the overall energy dependence is measured and k_{bq} deduced using Monte Carlo.

Canada's Capital University

energy dependence of the detector: absorbed-dose energy dependence

The absorbed-dose energy dependence of the detector is widely recognized and relates dose to medium of interest to dose to detector.

$$D_{\mathrm{med}}(Q) = f(Q) D_{\mathrm{det}}(Q)$$

D_{med}(Q) is dose at the point of measurement in the absence of detector

f(Q) can, in principle, be calculated by Monte Carlo.

energy dependence of the detector: absorbed-dose energy dependence

In ion chamber dosimetry

$$f(Q) = \left(rac{\overline{L}}{
ho}
ight)_{
m gas}^{
m med} P_{
m wall} P_{
m cel} P_{
m stem} P_{
m repl}$$

For TLD dosimetry in low-energy photon beams, a simple approximation is

$$f(Q) pprox \left(rac{\overline{\mu}_{en}}{
ho}
ight)_{\mathrm{TLD}}^{\mathrm{med}}$$

but in practice one must use a Monte Carlo calculation since this only holds if photon fluence is same in both rleton media & only if detector is a photon detector.

energy dependence of the detector

$$egin{aligned} D_{
m det}(Q) &= k_{bq}(Q) M_{
m det}(Q) \ D_{
m med}(Q) &= f(Q) D_{
m det}(Q) \end{aligned}$$

$$N_{D,w} = rac{D_{
m med}}{M_{
m det}} = f(Q) k_{bq}(Q)$$

Since $N_{D,w}$ includes k_{bq} which cannot be calculated using Monte Carlo, we cannot calculate the calibration coefficient or its inverse, the absorbed-dose sensitivity ($S_{AD,water}$) without making explicit assumptions about k_{bq} .

The same applies to variations in these quantities with beam quality.

Canada's Capital University

19/21

other dependencies

directional dependence

Can be part of f(Q) and $k_{bq}(Q)$, and if strong dependence the protocol for detector's use will include info on the orientation of the detector

spatial resolution/size effects

Can be part of f(Q) and $k_{bq}(Q)$ but for situations with small beams or near edges of beams, it may be useful to separate out these effects

Acknowledgements

Thanks to Alan Nahum, Jan Seuntjens and Jeff Williamson for comments on early drafts of this chapter.

Work supported by the Canada Research Chairs program and

