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The six levels of diagnostic efficacy:
(Fryback & Thornbury, Med Decis Making, 1991)

4) Therapeutic efficacy:
Impact of Dx test on patient
management

5) Patient-outcome efficacy:
Impact of Dx test on
patients’ health

6) Societal efficacy: Impact of
Dx test on society as a
whole

1) Technical quality: MTF,
NPS, H&D curve, etc.

2) Diagnostic accuracy:
Agreement between
diagnoses and “truth”

3) Diagnostic-thinking
efficacy: Impact of Dx test
on physician’s thinking
about each patient
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Why is receiver operatingWhy is receiver operating
characteristic (ROC) analysischaracteristic (ROC) analysis

necessary?necessary?

… because of the limitations of other
available methods for evaluating

diagnostic accuracy

4

• Sensitivity: Probability of calling an
actually-positive case “Positive”

• Specificity: Probability of calling an
actually-negative case “Negative”

A A pairpair of indices: of indices:

“Sensitivity” and “Specificity”
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• independent of disease prevalence
(if Dx test is used in a constant way)

• implicitly reveal relative frequencies
of FP and FN errors

“Sensitivity” and “Specificity”:

6

Problems in Problems in comparingcomparing  DxDx tests in tests in
terms of Sensitivity and Specificity:terms of Sensitivity and Specificity:

• Sensitivity and Specificity of each test
depend on the particular “threshold of
abnormality” adopted for that test

• Often, one test is found to have higher
Sensitivity but lower Specificity than
the other
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Dependence of Sensitivity and SpecificityDependence of Sensitivity and Specificity
on on ““threshold of abnormalitythreshold of abnormality ””::
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A A curvecurve is swept out as the  is swept out as the ““threshold ofthreshold of
abnormalityabnormality”” (t) is varied continuously: (t) is varied continuously:
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The ROC The ROC ““Area IndexArea Index”” ( (AAzz):):
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Interpretations of ROC area (Interpretations of ROC area (AAzz):):

• Sensitivity (TPF) averaged over all Specificities
(or FPFs) — i.e., average ROC curve height

• Specificity averaged over all Sensitivities

• Probability of distinguishing correctly between
a randomly selected actually-positive case and
a randomly selected actually-negative case

However ...However ...

• this global index can be misleading when curves
cross and/or there is only one region of interest

11

Other ROC-based indices ofOther ROC-based indices of
performanceperformance

• Partial area below, or to the right of, a
segment of the ROC curve (regional)

• TPF at fixed FPF or vice-versa (local)

• Expected utility at optimal operating point
(local) — most meaningful but least
practical

12

GeneralizedGeneralized ROC analysis : ROC analysis :

•• Localization ROC (Localization ROC (LROC) analysis) analysis

• Free-response ROC (FROC) analysis

• Alternative FROC (AFROC) analysis



Page ‹#›

13

ConventionalConventional ROC curves: ROC curves:
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LROCLROC (Localization ROC) curves: (Localization ROC) curves:
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AFROCAFROC (Alternative FROC) curves (Alternative FROC) curves
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The “technology” of ROC analysis:

Sampling images and readers

Designing the experiment and collecting
observer-response data

Fitting ROC curves to the data

Testing the statistical significance of apparent
differences between ROC curve estimates

18

Selecting meaningful samples ofSelecting meaningful samples of
cases and readerscases and readers

• “Absolute measurement” vs. “Ranking” study
– Absolute measurement: Samples must represent defined

clinical populations
– Ranking: Cases and/or readers can be selected to

represent “stressful” subpopulations (e.g., subtle cases
and/or expert readers)
—> Generalization of conclusions requires assumptions

• Criteria for inclusion must be explicit
– Absolute measurement: Define populations sampled

– Ranking: Report characteristics of cases and readers
employed
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Designing a study to avoid bias ...Designing a study to avoid bias ...

• ... due to absence of subtle disease:
–  Before study is begun, decide criteria for “actually-

positive” cases to be included

• ... due to absence of confounding cases:
–  Include clinically-encountered “actually-negative”

cases with features that may degrade classifier
performance (e.g., cysts in detection of breast cancer)

• ... due to absence of “truth” (verification bias):
–  Establish “truth” for — and include — difficult cases

20

Avoiding bias Avoiding bias in assessments
of automated classifiers …

• ... due to training and testing on same cases:
–  Train and test classifier on different cases subsampled

independently from same sample (e.g., “leave-one-out”
method)

—>Difficult or impossible with rule-based classifiers

• ... due to misinterpretation of meaning and
precision of evaluation study’s result:

– Changing number of training cases changes both true
classification accuracy and precision with which true
classification accuracy (for a given number of training
cases employed) can be estimated

–  Changing number of test cases changes only precision

21

Avoiding bias in Avoiding bias in CADCAD studies... studies...

• ... from failure to consider how CAD will be used:
– If CAD is to aid human observer, then performance of aided

observer must be measured

—> Better computer detection scheme may not complement
human observer best

—> Computer-human interface is crucial

• ... from failure to consider higher-level efficacy:
–  Does/will CAD change patient outcomes?

–  Is/will CAD be cost effective?

—> Data are needed — faith is not enough!
22

Practical issues in designingPractical issues in designing
human observer studieshuman observer studies

• Use a continuous or nominally continuous
(“100-point”) rating scale

• Use a block design to avoid “reading-order”
effects

• In clinical studies, don’t underestimate the
difficulty of establishing “truth” without
introducing bias

23

Current controversies:Current controversies:

• Advantages/disadvantages of discrete vs.
continuous or nominally continuous (“100-
point”) confidence-rating scales?

• Advantages/disadvantages of conventional
ROC vs. FROC/AFROC methodology?
– realism

– adequacy of information obtained

– availability of robust curve-fitting and statistical
techniques

– statistical power
24

The “technology” of ROC analysis:

Sampling images and readers

Designing the experiment and collecting
observer-response data

Fitting ROC curves to the data

Testing the statistical significance of apparent
differences between ROC curve estimates
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ROC curve fittingROC curve fitting

• Some functional form with adjustable
parameters must be assumed for the ROC
curve — usually the “binormal” model

• The assumptions of conventional least-
squares curve fitting aren’t valid here, so
maximum-likelihood (ML) estimation
should be used instead

• Free software is available (listed later)
26

ROC curve fitting ROC curve fitting (continued)(continued)

The conventional “binormal” curve-fitting model ...
• assumes that all ROC curves plot as straight lines on

“normal deviate” axes (zTPF vs. zFPF)

• equivalently, assumes that the two underlying
distributions can be transformed to normal by a
generally unknown transformation (“semi-
parametric”)

• has been shown valid in a broad variety of situations

but ...but ...
• can yield inappropriate shapes when cases are few

and/or when data scale is discrete and operating
points are poorly-distributed (–> “proper” models)

27

Statistical significance tests forStatistical significance tests for
differences between ROC curvesdifferences between ROC curves

• Area index Az (global)

• TPF at a given FPF (local)

• FPF at a given TPF (local)

• Partial area index (“regional”)

• Both parameters of binormal model (“bivariate”)

• Cost/Benefit (at optimal operating points)

Ways that Ways that ““differencedifference”” can be quantified: can be quantified:

28

Statistical significance tests Statistical significance tests (cont(cont’’))

• Reader variation only (a “significant” result applies
to readers in general … but only to the particular
cases used in the experiment)

• Case-sample variation only (result applies to cases
in general … but only to the particular reader[s] used)

• Both (result applies to readers and cases in general)

Different statistical tests take different kindsDifferent statistical tests take different kinds
of variation taken into account (and, thus,of variation taken into account (and, thus,
allow different generalizations):allow different generalizations):

Conventional statistical tests cannot be applied
directly in most situations

⇒⇒⇒⇒    Note: 

29

Current statistical tests ...Current statistical tests ...

• paired or unpaired Student’s t test of
differences in any index ... at least in
principle

…… that take  that take only reader variationonly reader variation
into account:into account:

30

Current statistical tests...Current statistical tests...

• non-parametric Wilcoxon/Mann-Whitney tests of
differences in total ROC area [only] (Hanley &
McNeil; DeLong et al.)

• non-parametric tests of differences in any index
… at least in principle (Wieand et al.)

• semi-parametric tests of differences in any index
… at least in principle (Metz et al.)

…… that take  that take only case-sample variationonly case-sample variation
into account:into account:
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Current statistical tests...Current statistical tests...

…… that take  that take both sources of variationboth sources of variation  into into
account (and are applicable to differencesaccount (and are applicable to differences
in any index, at least in principle):in any index, at least in principle):

• semi-parametric tests (Swets & Pickett;
Dorfman, Berbaum & Metz; Toledano &
Gatsonis; Obuchowski)

• bootstrapping approach (Beiden, Wagner
& Campbell)

32

Free software for ROC analysis:Free software for ROC analysis:
• Metz (University of Chicago; >5000 registered users)

– ROCFIT and LABROC: fit a single ROC using the binormal model

– INDROC: tests difference between independent ROC estimates

– CORROC2 and CLABROC: test diff. between correlated ROCs
→ difference in Az

→ difference in TPF at given FPF
→ diff. in both binormal ROC curve parameters (“bivariate” test)

– ROCKIT: integrates and extends the five programs above

– PROPROC: fits a single ROC using the “proper” binormal model

– LABMRMC: does a jackknife-ANOVA test for difference in Az (data
collected on continuous and/or discrete scale)

• Dorfman and Berbaum (University of Iowa)
– RSCORE2 and RSCORE4: fit a single ROC using binormal model

– MRMC: Jackknife-ANOVA test for diff. in Az (discrete scale only)

33

All University of All University of Chicago software for ROC software for ROC
curve fitting and statistical testing can becurve fitting and statistical testing can be
downloaded from the World Wide Web withoutdownloaded from the World Wide Web without
charge from:charge from:

http://xray.bsd.uchicago.edu/krl/roc_soft.htm

——> Please note new URL> Please note new URL

34

Current controversies:Current controversies:

• Best way to fit ROC curves to “degenerate” data?

– RSCORE4 (ad hoc)

–  bigamma model (restricts curve shape too much?)

–  “proper” binormal model (computationally intensive, no statistical
tests for differences so far)

–  “contaminated” binormal model (restricts curve shape too little?)

• Validity/robustness of current techniques for fitting
FROC/AFROC curves and testing the statistical
significance of differences thereof?

• Most appropriate index/indices for comparisons?

35

Relationship between ROCRelationship between ROC
analysis and Cost/Benefit analysis:analysis and Cost/Benefit analysis:

• Different “operating points” on an ROC curve
provide different frequencies of TP, FP, TN, and
FN decisions (which depend on disease
prevalence).

• If utilities can be assigned to the various kinds of
correct and incorrect decisions and if prevalence is
known, then the optimal operating point can be
found on any ROC curve.

• The maximized utility found in this way quantifies
the “value” of a diagnostic test in terms of its ROC.

• See reading list for details. 36

Needs for the future:Needs for the future:
• Develop stratified-sampling methodology

• Establish validity/robustness of data-analysis
techniques for free-response paradigms

– curve fitting

– statistical testing of differences

• Develop “MRMC” methods for statistical analysis
of data from incompletely-balanced experimental
designs, particularly ...

– when observers don’t read the same cases

– when data are correlated within cases
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Needs for the future Needs for the future (continued):(continued):

• Develop highly efficient approaches well-suited
to exploratory analyses

– Key need is to control for decision-threshold effects

– Other biases may be acceptable if sufficiently small

• Generalize ROC analysis to handle >2 decision
alternatives

– Must provide an appropriate compromise between
complexity and practicality

– Approaches proposed to date are not adequate
38
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