Advances and Quality

Assurance in Gamma

Camera & SPECT Systems

James R. Halama, PhD Nuclear Medicine Physicist Loyola University Medical Center Maywood, IL

- Resolution
- Uniformity
- Linearity
- Evaluated:
 - Intrinsically Specific to Crystal and PMT's
 - Extrinsically Includes the Collimator

FWHM of the LSF is approximately 0.9 times the resolution measured in mm/lp.

Resolution Vs. NaI(Tl) Crysta Thickness						
Crystal Thickness (inches)	FWHM (mm)	Photop ea k Efficien cy 140 keV	Photop eak Efficiency 511 keV			
1/4	3.0	0.70	-			
3/8	3.5	0.80	0.055			
1/2	3.7	0.85	0.07			
5/8	3.9	0.90	0.09			
3/4	4.4	0.96	0.10			
1.0	4.5	0.99	0.30			

Resolution vs. Number of PMT's

 The larger number of tubes the better the intrinsic resolution (e.g. 3.9 mm FWHM for 37 tubes vs. 3.6 mm FWHM for 75 tubes)

Resolution vs. Photon Energy

Intrinsic resolution is better for high energy photons.

Extrinsic Resolution

Extrinsic resolution is the quadrature sum of the geometric resolution of the collimator and the intrinsic resolution of the detector.

 $FWHM_E = \sqrt{(Collimator FWHM)^2 + (Detector FWHM)^2}$

Energy Rating of Available Collimators

Collimator Type	Max. Energy Rating (keV)	Septal Thickness (mm)	Iso to pes
Low Energy	140 - 200	0.2 - 0.3	^{99m} Tc, ²⁰¹ Tl ¹³³ Xe, ¹²³ I
Medium Energy	300	1.1 - 1.4	⁶⁷ Ga, ¹¹¹ In, ¹²³ I
High Energy	360 - 500	1.3 - 3.0	¹³¹ I
Ultra-High Energy	511	3.0 - 4.0	Positron Em itters

Septal Penetration

 Image Resulted from imaging a ¹³¹ I point source using a LEHR collimator.
Pen etration artifacts appear along directions of septa that is thinnest.
The LEHR collimator

 The LEHR collimator has hexagonal holes

Resolution of Available Collimators

....

Туре	Diameter (mm)	Length (mm)	at0 cm (mm)**	at 10 cm (mm)**	at20cm (mm)**	(CPM/µCi)
Low Energy All Purpose	1.43	23.6	4.4	9.1	153	360 (^{***} Tc)
Low Energy High Resolution	1.11	23.6	4.2	75	123	230 (^{mm} Tc)
Low Energy Ultra-High Resolution	1.08	35.6	4.2	5.9	8.6	100 (^{ma} Tc)
Medium Energy	3.02	40.6	5.6	12.1	19.7	288 (⁴⁷ Ga)
High Energy	4.32	62.8	6.6	13.8	2 2.0	176 (¹³¹ I)
Ultra-High Energy	3.4	75.0	6.0	10.4	~20.0	60 (¹⁸ F)

Siemens Orbiter Gamma Camera System with intrinsic resolution of 3.9 mm FW HM

Non-uniformity	y From Shading by a
Second	dary Source
A second ^{99m} Tc source in the room or in the hot lab next door.	

Quality Control

- Uniformity Each day of use, before imaging begins. Intrinsic flood image is preferred. Extrinsic of heavily used collimators as well. Flood images of 3-15 million counts.
- Resolution Once per week with four-quadrant bar pattern (monthly for digital cameras, ACR weekly). Intrinsic resolution image is preferred. Images of 3-5 million counts
- Linearity Once per week with PLES bar or orthogonal hole pattern (monthly for digital cameras, ACR weekly). Intrinsic resolution image is preferred. Images of 3-5 million counts.

		Dail	y ADAO	C FORT	TE 2		
Date	Detector	Bkg count	Energy Peak	IU UNOV	IU CROV	Coll check	Tech
2/3/03	1/2	7/8	140/139	2.74/2.79	2.74/2.44	V	Q 44
214/03	1/2	5/5	140/139	2.94/352	2.9%250	~	TC 48
215/03	1/2	4/7	140/139	2.95/2.96	2.95/2.86	~	JE 50
216/03	1/2	4/2	140/139	2.84 3.17	2.84/2.0	~	9E 50
2/7/03	1/2	4/6	49/139	3.28/357	3.28/3.21	~	ge 50
217/03	rido		18-1	5. 11/3.31	3.14/3.17		<i>'</i>
2/10/03	1/2	5/8	49139	2.83	2.97 Bry	~	£ 50
2/11/03	12	3/5	140 139	154 8.7	1.48/27	~	Je
2/12/03	1/2	*77	140/134	1.5%	1-5-12.40	~	JE 51
2/13/03	1/2	445	137/139	2.73 ct	2.83/3.01	4	p 47
~114/03	72	*/5	131/139	15.90	2.75/2.96	~	JE 50
2/7	11L	69	131 140	2.74/2-11	241/250	/	A 49
AB	12	215	801 MC	2.19/220	245/ B22	- V - 1	R 48

Annual Measurements

- Energy resolution
- Multiple-window registration
- Count rate capability peak count rate and dead time
- Sensitivity counts/minute/uCi for a given collimator

• Sensitivity greater than NaI(Tl) Anger camera

1000	12	22	122	122	22		
	12	10	1	10	10	10	
80.8	0.80	-89	-89	-89	-89	-89	
80.8	6.66	-80	-80	-80	-80	-80	
10 A	5.45	-80	-10	-10	-10	-10	
S. 8		.2	. 8	. ĝ	. 8	. 8	
6.6	1.6	. ä	. ä	. ä	. å	. á	

Each line across the image corresponds to one transaxial slice in the tomographic volume.

Myocardial SPECT

• Heart lies obliquely in the chest.

 Reconstruct tomographic image slices parallel and perpendicular to the long axis of the ventricles.

(at 20 cm radius of rotation)										
Collimator Type	H ole Diameter (mm)	Hole Length (mm)	FWHM at0 cm (mm)**	FWHM at 10 cm (mm)**	FWHM at20cm (mm)**	Sensitivity (CPM/µCi				
Low Energy All Purpose	1.43	23.6	4.4	9.1	153	360 (^{99m} Tc)				
Low Energy High Resolution	1.11	23.6	4.2	75	123	230 (^{ma} Te)				
Low Energy Ultra-High Resolution	1.08	35.6	4.2	59	8.6	100 (⁹⁹ Tc)				
Medium Energy	3.02	40.6	5.6	12.1	19.7	288 (⁶⁷ Ga)				
High Energy	4.32	62.8	6.6	13.8	2 2.0	176 (¹³¹ I)				
Ultra-High Energy	3.4	75.0	6.0	10.4	~20.0	60 (¹⁸ F)				

 Circular Camera Rotation with translation of the camera and/or patien t.

 Improves spatial resolution by moving collimator/patient closer.

How Many Images to Acquire?

 Typically camera detectors rotate through 360 degrees.
Stepping angle (b) = 360 deg. / #stops
Sampling distance (d) at the organ edge = 0 D/2
For good resolution d must be small which implies small q and a large

which implies small q and a large number of stops. Low Resolution SPECT - 60 images at 6 degree steps

High Resolution SPECT - 120 images at 3 degree steps

Chang Attenuation Correction Method

$C = C_0 e^{-\mu t}$

μ - linear attenuation coefficient in tissue. Assume uniform tissue density (for 140 keV, μ=0.15/cm)

OSEM – Accelerated EM

- Acceleration of EM using ordered subsets. As many as 8 subsets of the projection date are used.
- Iterative updates are made for each subset. One full iteration is complete after all 8 subsets have been completed.
- Corrections for attenuation, scatter, and resolution losses can be incorporated into the iterative reconstruction algorithms

