CAD With an Eye Towards the Radiologist

Elizabeth A. Krupinski, PhD University of Arizona

Why CAD?

- False negatives (misses) occur
 - Some estimates > 30%
- False-positives occur
 - Some estimates > 25%
- Incorrect classification
 - Benign vs malignant
 - Wrong diagnosis

Why CAD?

- Cognitive overload
 - 1000s of images generated
- Reading time
 - More images = more time = fewer cases = less productivity = lower department income
- Generalists vs specialists
 - Shortages in radiology

Prompting Endeavors

- History effects
 - Hurt or help? Before or after?
- SOS effects

- When does it occur?
- Checklists & decision trees
- What makes a good radiologist?
 - Perceptual skills tests

Prompting

- History = written/verbal prompt
 - Potentially vague, SOS effects
- Exploration of physical prompts
 - Based on what?
 - Conveys what information?
 - Location
 - Lesion type
 - Status probability

Perceptual Prompting

- Perceptually-based prompts
 - Record eye-position
 - Identify error types
 - Search, Recognition, Decision
 - 0, < 1000, > 1000 msec
 - Feedback areas based on dwell thresholds

Visual Search Model

Things to Note

- Large inter-observer variation
- Large intra-observer variation
- Task & image dependent

- Not uniform fairly random
- Can peripherally detect lesions without fixating
- Can fixate and not "see"
- Not all areas covered

Survival Analysis Perceptual Feedback Performance Results Prompt Types What Prompts Do

- Restrict dispersion of fixations
- Increase fixation accuracy on target lesion
- Inhibit distracting peripheral effects outside prompt area
- Problem limited to individual radiologists & what they scan

Can Computers Help?

- Less variation
- Do not fatigue
- Not distracted
- More complete coverage
- Possibly quicker
- Less bias
- Still focus attention
- But

Computer vs Human

Performance Results

- CAD at least as good as human
- CAD better than human
 - Not perfect so still need human
- CAD improves human performance
 - Expert non-expert differences
 - Trust issues

Poller et al.

- Cueing study
 - 90% & 50% sensitivity
 - 0.5 & 2 FPs per image
- One observer ignored cues & only looked at non-cued areas
- Sensitivity \downarrow as FP \uparrow
- Sensitivity lower cued vs no cues
- Non-cued may offset cued gains

CAD, Time & Expertise Decisions & Dwells What Do They Want?

- Reliable & consistent
- High sensitivity & specificity
- Quick & intuitive
- Toggle on & off
- Enhancements
 - CAD says it there, I can't see it
 - Segment or process it
- Improve performance