Adult & pediatric doses in CT

Walter Huda PhD

SUNY Upstate Medical University, Syracuse NY Introduction (Doses & risks)

CT doses (CTDI/E)

Head CT doses

Reducing CT doses

CTDI is independent of section thickness T & number of sections N

Patient risk *does* depend on section thickness T & number of sections N

Dose (risk) in CT is best measured by effective dose (E)

 $\mathbf{E} = \mathbf{\Sigma}_{\mathbf{i}} \ \mathbf{w}_{\mathbf{i}} \ \mathbf{x} \ \mathbf{D}_{\mathbf{i}}$

Computing adult and pediatric doses in head CT examinations

127 patients undergoing head CT examinations

Measurements made at level of the basal ganglia

Dimensions & average HU

Heads modeled
as water
equivalent
cylinders
with a radius r

Infants ~60 mm

Adults ~90 mm

Compute E/ε ratio for different sized patients (i.e., newborn to adults)

Patient dose: is proportional to mAs increases by factor of 5 when going from 80 to 140 kV (@ constant mAs)

Dose reduction strategies Technology (AEC) Dose reduction (ALARA) Optimization

Stochastic risks are important in CT

Deterministic risk should not occur

Effective doses in CT

1 – 2 mSv for head

5-10 mSv for body

CT doses "dominate" medical exposures

ALARA principle should be used to minimize patient doses

