SI	u	

TG-61: A Dosimetry Protocol for Kilovoltage X-ray Beams

C.-M. Charlie Ma
Dept. of Radiation Oncology, FCCC, Philadelphia, PA

Slide 2

AAPM TG-61 Report

(Med. Phys. 28 (6) 2001 868-893)

Charles Coffey Chihray Liu Ravi Nath Jan Seuntjens Larry DeWerd Charlie Ma Stephen Seltzer

Slide 3

Outline

- Kilovoltage x-ray dosimetry- a review
- Dosimeters and calibration procedures
- Formalisms for kV x-ray dose determination
- AAPM recommendations TG-61 Report

Slide 4	The physics of kV x-ray dosimetry • Very short electron ranges (< 0.5 mm water) • Large scatter contributions and SSD, field size, beam quality dependent • Bragg-Gray cavity conditions very difficult to fulfil - even for air-fill ion chambers • Kerma = dose (also K _{col} = K as negl. Brem.) • Ion chambers calibrated as "exposure meters" and used as "photon detectors"	
Slide 5	Detectors for kV x-ray beams • Air-filled ion chambers are recommended for absolute dose measurements • Diode, film, diamond detectors for relative measurements	
Slide 6	 Kilovoltage x-ray dosimetry- a review ICRU Report 23 (1973) significant changes made 40-150 kV in-air method, >150 kV in-phantom NCRP Report 69 (1981) only protocol for N. Ame. 10 kV and above, in-air method, no BSF given 	

 IAEA Report 277 (1987) significant changes made 10-100 kV in-air method, >100 kV in-phantom

lide 7		
	Kilovoltage x-ray dosimetry- a review	
	IPEMB Code of Practice (1996) with three ranges	
	Very low- (< 1mmAl) in-phantom, low- (1-8mmAl) in-air, medium-energy (>0.5mmCu) in-phantom	
	 NCS Code of Practice (1997) two energy ranges 	
	50 - 100 kV in-air method, 100 - 300 kV in-phantom	
	IAEA Code of Practice (2000) - new recommendations Absorbed dose based, consistent with other beams	
ide 8		
	and the second s	
	Kilovoltage x-ray dosimetry	
	For law aparety (10 150 by 0 ALIDI)	
	• For low-energy (40 - 150 kV, 8mm Al HVL)	
	• For low-energy (40 - 150 kV, 8mm Al HVL) x-rays - the backscatter method	
	x-rays - the backscatter method	

Why (not) backscatter method?

Widely used in practice but...

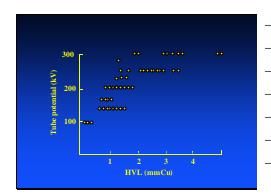
- BS factor mainly from calculations
- BS factor varies with SSD, field size, and energy (beam quality)
- Measured quantity is kerma (not dose)
- High uncertainty in PDD near the surface
- Not well verified for medium-energy beam

What's New in AAPM TG-61?

- Use both the in-air and in-phantom methods for tube potentials 100 - 300 kV
- More complete data (for water, tissue & bone)
- Recommendations for relative measurements
- Recommendations for QA and consistency check

Slide 11

Beam quality specification


• Use a "narrow beam geometry"

• Half-Value Layer expressed in mm Ai or Cu

for 40-150 kV x-rays: use mmAl for 100 - 300 kV x-rays: use mmCu

Slide 12

Beam quality specification

- Use both tube potential and HVL to specify beam quality for chamber calibration
- Use HVL to specify beam quality for determination of chamber correction and conversion factors

Slide 14

Formalism for kV x-ray dosimetry

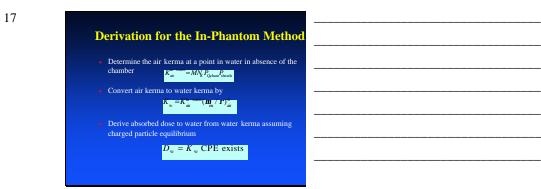
• The backscatter method

$$N_K = K_c / M_c$$

 $D_{w} = MN_{K} (\mathbf{m}_{en} / \mathbf{r})_{air}^{w} P_{stem,air} B_{w}$

Slide 15

Derivation for the In-Air Method


- Determine the air kerma at a point in air in absence of the chamber $K_{\text{air}}^{---} = MN_{\chi}P_{\text{stempir}}$
- Convert air kerma to water kerma by $K_{w} = K_{air} (m_{ti} / r)$
- Derive water kerma on the surface using a backscatter factor $K = K^{\frac{1}{2} \text{tot}} R$

 Derive absorbed dose to water from water kerma assuming charged particle equilibrium CPE exists

Formalism for kV x-ray dosimetry • The in-phantom method $N_K = K_c / M_c$ $D_w = MN_K (\mathbf{m}_m / \mathbf{r})_{air}^w P_{sheath}^P Q_{cham}$

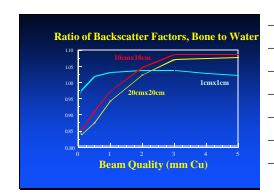
Slide 17

Slide 18

Consistency between the in-air and in-phantom methods

- Select a method based on point of interest
- Check consistency only if PDD can be measured accurately
- Experimental studies indicated consistent results (about 1%) using both methods at 100 and 300 kV

Guidelines for dosimetry in other phantom materials

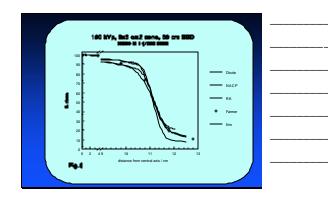

Determine the surface dose for other phantom materials from

• where

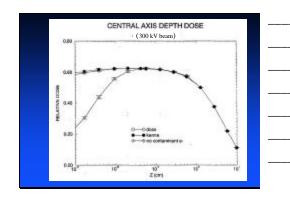
 $D_{\text{med,z=0}} = C_{\text{w}}^{\text{med}} D_{\text{w,z=0}}$ $C_{\text{w}}^{\text{med}} = \frac{B_{\text{med}}}{D} \left[\left(\mathbf{m}_{\text{en}} / \mathbf{r} \right)_{\text{w}}^{\text{med}} \right]_{\text{sir}}$

 The backscatter factor ratios are significant for bone to water but close to 1.0 for soft tissues.

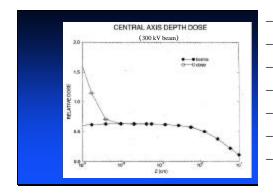
Slide 20



Slide 21


Relative dosimetry measurement

- Large uncertainty in PDD measurements
- Large uncertainty in profile measurements
- Effect of electron contamination
- Choice of detectors
- Choice of phantom materials


Slide 22

Slide 23

Slide 24

~ 1		1	~ ~
V. I	1	10	25
N)	ш	uc	, 40

Summary of TG-61 Recommendations

- Water phantom for absolute dose determination, 2 cm depth for > 100 kV, plastic phantoms for routine checks
- Effective point of measurement: center of air cavity
 40-70 kV: parallel plate chamber
 70-300 kV: cylindrical chamber
- Use both tube potential and HVL for chamber calibration
- Appropriate build-up for parallel plate chambers

Slide 26

Summary of TG-61 Recommendations

- Narrow beam geometry for HVL determination
- What method to use depending on beam quality and poin of interest (POI)

40-100~kV ; only the in-air method should be used 100-300~kV ; the in-air method if POI on surface 100-300~kV ; the in-phantom method if POI at a depth

- · Inter-compare chamber for correction/conversion factors
- Use HVL as beam quality specifier for conversion and correction factor (tabular data preferred)

Slide 27

Conclusions

- Exposure/kerma based dosimetry procedures
- Backscatter method for both low- and mediumenergy x-ray beams
- Complete data set available for μ_{cn}/ρ , B, $P_{Q,cham}$ and P_{sleeve}
- Consistent results using both formalisms