Practical Implementation of TG-61:

II. Guidelines for clinical implementation of TG-61

J.P. Seuntjens Medical Physics Unit McGill University, Montreal General Hospital Montréal, Canada jseuntjens@medphys.mcgill.ca

TG-61 deals with:

- Calibration of absolute output of orthovoltage x-ray units in terms of D_w
- Relative dosimetry of orthovoltage beams
- Clinical issues
 - electron contamination
 - dose in biological tissues

This part of the refresher course:

- Aspects and pitfalls of absolute output calibration
- Peculiarities in relative dosimetry of kilovoltage beams
- Other clinical issues

Absolute calibration: Summary of recommendations

- tube potential < 100 kV
 - in-air method mandatory
- tube potential ≥ 100 kV
 - in-phantom method allowed
- choice for medium energies to be made based on the location of the point of interest (target volume)

Chambers

- Chambers:
 - low energy
 - tube potential < 70 kV: soft x-ray parallel plate chambers
 - tube potential ≥ 70 kV: cylindrical chambers with flat energy response
 - medium energy
 - cylindrical chambers with flat energy response

Phantoms

- no phantom
 - for in-air method
- water phantom
 - for in-phantom reference dosimetry
 - for relative dosimetry
- plastic phantoms for stability checks

I. Absolute calibration: a. In-air method

Absolute Calibration: In-air method $D_{W}(0 \text{ cm}) = MN_{K}P_{stem,air} \begin{bmatrix} \overline{\mu}_{en} \\ \rho \end{bmatrix}_{air}^{W} B_{W}$ M: "corrected" chamber reading N_{K} : air-kerma calibration factor $P_{stem,air}$: stem correction factor free-in-air $\begin{bmatrix} \overline{\mu}_{en} \\ \rho \end{bmatrix}_{air}^{W} \text{mass-energy absorption coefficient ratio water to air, free-in-air}$

In-air method: 2 conceptual steps

Step 1: measure air-kerma in clinical beam
 get and interpolate N_K from a standards
 dosimetry laboratory (ADCL's, NIST, NRCC)
 establish P_{stem.air}

 K_{air} (clinical beam) = $MN_K P_{stem.air}$

In-air method: 2 conceptual steps

 B_{w} back-scatter factor

 Step 2: look-up conversion factor and backscatter factor

$$D_{w} = K_{w} = K_{w,air} B_{w} = K_{air} \left[\left(\frac{\overline{\mu}_{en}}{\rho} \right)_{air}^{w} \right]_{air} B_{w}$$

STEP 1:

Getting a calibration factor from standards lab & Evaluating P_{stem,air}

Get N_K from standards lab

 calibration in terms of air-kerma (for both in-air and in-phantom method):

beam quality specification is in terms of both *HVL* and tube potential

	by AD	LL S	
Beam Code	First HVL		Hom. Coeff
	(mm Al)	(mm Cu)	(AI)
L40	0.50		59
L80	1.83		57
M40	0.73		69
M80	2.97		67
M100	5.02		73
M150	10.2	0.67	87
M300	22.0	5.3	100

Energy dependence of chamber calibration factor?

"... calibration factors should not vary significantly between two calibration points so that the estimated uncertainty in the calibration factor for a clinical beam between the two calibration points is within 2%."

Energy dependence: in practical terms

- chamber response should be known approximately, e.g., from manufacturer
- calibration for at least two radiation qualities that bracket the radiation quality used in the clinic
- $N_{\rm K}$ (x-rays)/ $N_{\rm K}$ (60 Co) should be as expected

In-air method: evaluate P_{stem,air}

- for cylindrical chambers, stem effect in-air is usually less than 1% so P_{stem,air}<1%
- stem scatter for "large body" endwindow or superficial therapy chambers can be appreciable and should be checked

Backscatter factors

• $B_{\rm w}$ is a kerma based quantity:

$$B_{W} = \frac{K_{W,phantom}}{K_{W,free-air}}$$

- Based on Monte Carlo calculations
 - TG61 adopted data sets from Grosswendt (1990, 1993)
- "Surface kerma" is very difficult to measure with chambers
 - electron contamination
 - chamber response issues

Clinical issues of in-air method

- strain on accurate knowledge of energy dependence of chamber response
- clinical relevance of electron contamination at the surface
- validity of backscatter factors for small cones

In-air method:
Uncertainty at the reference point
♥ McGill

Type of quantity or procedure	Uncertainty
N _K from standards lab Effect of beam-quality difference	0.7% 2.0%
Backscatter factor B_w $P_{stem.air}$ W	1.5% 1.0% 1.5%
$\left(\frac{\mu_{en}}{\rho}\right)_{air}^{"}$ Free-air measurement in user's	1.5%

Summary: In-phantom method $D_{W}(2 \text{ cm}) = MN_{K}P_{\text{sheath}}P_{\text{O,cham}} \left(\frac{\overline{\mu}_{\text{en}}}{\rho}\right)^{W}_{\text{air}}$ M: "corrected" in-phantom chamber reading N_{K} : air-kerma calibration factor P_{sheath} : sheath correction factor $P_{\text{O,cham}}$: chamber correction factor $\left(\frac{\overline{\mu}_{\text{en}}}{\rho}\right)^{W}_{\text{air}}$ mass-energy absorption coefficient ratio water to air, in-phantom

Background: In-phantom method

Step 1: measure air kerma in water:
 get and interpolate N_K from a
 standards laboratory (see: in-air method)
 perform in-phantom measurement M (2 cm)

$$K'_{air}(w) = MN_K$$

Background: In-phantom method

 Step 2: lookup conversion factor, chamber correction factor, sheath correction factor

$$D_{W} \cong K_{W}(w) = \underbrace{K_{air}(w)P_{Q,cham}P_{sheath}}_{K_{air}(w)} \underbrace{\frac{\overline{\mu}_{en}}{\rho}}_{air}^{W}$$

Clinical issues of in-phantom method

- positioning uncertainties
- strain on accuracy of PDD if point of interest is more shallow than the calibration depth of 2 cm (i.e., errors get "blown up")

Type of quantity or procedure	Uncertainty
N _K from standards lab	0.7%
Effect of beam-quality difference	2.0%
Chamber correction factor Pocham	1.5%
Sleeve correction factor P _{sheath}	0.5%
$\left[\left(\frac{\overline{\mu}_{en}}{\rho}\right)_{air}^{w}\right]_{water}$	1.5%
In-water measurement in user's	2.0%
<u>beam</u>	
Combined D _{w,z=2cm}	3.6%

Acceptable dosimeters At depth: cylindrical General: chambers with bad in-phantom response characteristics At surface: plane parallel cletron chambers (tested: components in or near NACP, Markus) radiochromic film, diamond detectors, liquid lonization chambers

plastic phantom materials useful for QA of output

Phantoms

 NOT for absolute calibrations unless investigated

Surface dose and electron contamination

- TG-61 is a kerma-based protocol, i.e, surface dose cannot be derived from an air-kerma protocol
- Surface dose, should be assessed using thin window plane parallel chambers and dealt with if clinically important

Dose in biological tissues

 TG-61 provides a method to calculate dose at the surface of tissue phantoms

$$C_{W}^{med} = \frac{B_{med}}{B_{W}} \left[\left(\frac{\overline{\mu}_{en}}{\rho} \right)_{W}^{med} \right]_{air}$$

Dose in biological tissues

- for soft tissues the ratio of the backscatter factors is ignored; for compact bone, a table is provided
- no recommendations on how to calculate dose at depth in the patient

Conclusions

- TG-61 is an air-kerma based protocol recommending
 - in-air method (low and medium energy if point of interest is at the surface)
 - in-phantom method (medium energy if point of interest is at a depth in-phantom)
- · We discussed:
 - calibration issues
 - relative dosimetry
 - some clinical issues